binomial distribution
binomial distribution - discrete probability distribution of the number of successes in a sequence of n independent experiments, with a success or failure outcomeBinomial Distribution
Free Binomial Distribution Calculator - Calculates the probability of 3 separate events that follow a binomial distribution. It calculates the probability of exactly k successes, no more than k successes, and greater than k successes as well as the mean, variance, standard deviation, skewness and kurtosis.
Also calculates the normal approximation to the binomial distribution with and without the continuity correction factor
Calculates moment number t using the moment generating function
You want the binomial distribution, where a "success" is that the plant [U]does not[/U] grow. So if the probability that the plant grows is 0.9, the probability it does not grow is 1 - 0.9 = 0.1. We have n = 12, p = 0.1 You want the probability that exactly 4 of 12 do not grow. Use our [URL='http://www.mathcelebrity.com/binomial.php?n=+12&p=+0.1&k=+4&t=+5&pl=P%28X+%3D+k%29']binomial distribution probability calculato[/URL]r to get P(X = 4) = [B]0.0213[/B]
Eighty percent of the employees at Rowan University have their biweekly Wages deposit directly to their bank by electronic deposit program. Suppose we select a random samples of 8 employees. What is the probability that three of the eight (8) sampled employees use direct deposit program? Use the [I]binomial distribution[/I] [LIST] [*]p = 0.8 [*]n = 8 [*]k = 3 [/LIST] So we want P(X = 3) Using our [URL='http://www.mathcelebrity.com/binomial.php?n=+8&p=+0.8&k=+3&t=+5&pl=P%28X+=+k%29']binomial distribution calculator[/URL], we get P(X = 3) = [B]0.0092[/B]
Mimi just started her tennis class three weeks ago. On average, she is able to return 20% of her opponent's serves. Assume her opponent serves 8 times. Show all work. Let X be the number of returns that Mimi gets. As we know, the distribution of X is a binomial probability distribution. a) What is the number of trials (n), probability of successes (p) and probability of failures (q), respectively? b) Find the probability that that she returns at least 1 of the 8 serves from her opponent. (c) How many serves can she expect to return? a) [B]n = 8 p = 0.2[/B] q = 1 - p q = 1 - 0.2 [B]q = 0.8 [/B] b) [B]0.4967[/B] on our [URL='http://www.mathcelebrity.com/binomial.php?n=+8&p=0.2&k=1&t=+5&pl=P%28X+>+k%29']binomial calculator[/URL] c) np = 8(0.2) = 1.6 ~ [B]2[/B] using the link above
Free Negative Binomial Distribution Calculator - Calculates the probability of the kth success on the xth try for a negative binomial distribution also known as the Pascal distribution.? ? It calculates the probability of exactly k successes, no more than k successes, and greater than k successes as well as the mean, variance, and standard deviation.
ncG1vNJzZmivp6x7rq3ToZqepJWXv6rA2GeaqKVfqLKivsKhZamgoHS%2Bfq7Ip6amoZGhcnN8w6KqraqZl8K1tc6n